A theorem on torsion free Kleinian group

نویسندگان

  • Young Deuk Kim
  • YOUNG DEUK KIM
چکیده

Let H be the hyperbolic 3-space and IsomH be the group of isometries of H. Let G be a discrete subgroup of IsomH. The action of G on H extends to a continuous action on the compactification of H by the sphere at infinity S ∞. The limit set Λ(G) is the set of all accumulation points of the orbit of a point in H. The limit set does not depend on the choice of the point in H and the limit set is a subset of S ∞ because G is discrete. The domain of discontinuity Ω(G) is the complement of Λ(G) in S ∞. A Kleinian group is a discrete subgroup of IsomH 3 with nonempty domain of discontinuity. An element of IsomH is called elliptic if it has a fixed point in H. An element of IsomH is called parabolic if it has no fixed point in H and it has unique fixed point on S ∞. An element of IsomH 3 is called hyperbolic if it has no fixed point in H and it has exactly two fixed point on S ∞. Any element of IsomH 3 is an elliptic, parabolic or hyperbolic isometry and torsion free Kleinian group does not contain any elliptic

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quasiconformal Stability of Kleinian Groups and an Embedding of a Space of Flat Conformal Structures

We show the quasiconformal stability for torsion-free convex cocompact Kleinian groups acting on higher dimensional hyperbolic spaces. As an application, we prove an embedding theorem of a space of flat conformal structures on a certain class of compact manifolds.

متن کامل

On (po-)torsion free and principally weakly (po-)flat $S$-posets

In this paper, we first consider (po-)torsion free and principally weakly (po-)flat $S$-posets, specifically  we discuss when (po-)torsion freeness implies principal weak (po-)flatness. Furthermore, we give a counterexample to show that Theorem 3.22 of Shi is incorrect. Thereby we present a correct version of this theorem. Finally, we characterize pomonoids over which all cyclic $S$-posets are ...

متن کامل

Minimal index torsion-free subgroups of Kleinian groups

A Kleinian group Γ is a discrete subgroup of PSL(2, C), the full group of orientation-preserving isometries of 3-dimensional hyperbolic space. In the language of [T1] Q = H3/Γ is a hyperbolic 3-orbifold; that is a metric 3-orbifold in which all sectional curvatures are -1, and for which Γ is the orbifold fundamental group (see [T1] for further details). A Fuchsian group is a discrete subgroup o...

متن کامل

Geometric Finiteness and Uniqueness for Kleinian Groups with Circle Packing Limit Sets

J. Reine Angew. Math 436 (1993), pp. 209– 219. Stony Brook IMS Preprint #1991/23 December 1991 Let G ⊂ PSL(2,C) be a geometrically finite Kleinian group, with region of discontinuity Ω(G). By Ahlfors’ finiteness theorem, the quotient, Ω(G)/G, is a finite union of Riemann surfaces of finite type. Thus on it, there are only finitely many mutually disjoint free homotopy classes of simple closed cu...

متن کامل

Kleinian groups and the rank problem

We prove that the rank problem is decidable in the class of torsion-free wordhyperbolic Kleinian groups. We also show that every group in this class has only finitely many Nielsen equivalence classes of generating sets of a given cardinality. AMS Classification numbers Primary: 20F67, 57M60

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002